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Nontrivial temporal scaling in a Galilean stick-slip dynamics
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We examine the stick-slip fluctuating response of a rough massive nonrotating cylinder moving on a rough
inclined groove which is submitted to weak external perturbations and which is maintained well below the
angle of repose. The experiments presented here, which are reminiscent of Galileo’s works with rolling objects
on inclines, have brought in the last years important insights into the friction between surfaces in relative
motion and are of relevance for earthquakes, differing from classical block-spring models by the mechanism of
energy input in the system. Robust nontrivial temporal scaling laws appearing in the dynamics of this system
are reported, and it is shown that the time-support where dissipation occurs approaches a statistical fractal set
with a fixed value of dimension. The distribution of periods of inactivity in the intermittent motion of the
cylinder is also studied and found to be closely related to the lacunarity of a random version of the classic
triadic Cantor set on the line.
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I. INTRODUCTION time series of earthquakes: The sliding distribution is de-

It can be conjectured that the experimental verification ofS¢TiPed by the Gutenberg and Richter lage) ~ 5%, where
fluctuations in the dynamic behavior of a block on an inclinen(s) is the number of events of sizgand the Omori law for
was first verified in the beginning of the 17th century. It isthe number of smaller events occurring at a timafter a
known that as early as 1604 Galileo believed in the nowarge eventn(t) ~t™, where the exponenmtis an anomalous
classical scaling lag~ t? connecting the distanceand the  one, lying between 0.25 and 0.45, and may be a complex
timet for an object falling close to Earth under the action of number. Stick-slip dynamics is a topic of broad interest, and
gravity [1]. Galileo’s application of this law forolling ob- it traditionally refers to the situation in which a solid on a
jects on inclined planes was discussed in his last bBo&k  horizontal surface is pulled at a constant driving velofg&y
Two New Sciencepublished in 1638. However, no explicit In the experiments discussed in this paper, the stick-slip dy-
or implicit mention of the application of this simple scaling hamics appears as a consequence of a completely different
law for nonrotating objects is made in Galileo’s works. Cer-mechanism: to start the slip we resort to small mechanical
tainly Galileo tried to study the pure translational motion of perturbations on an inclined surface, whose angle with the
objects on an incline, but he was possibly unable to encapiorizontal is below the angle of repose. It is important to
sulate the experimental results in a simple mathematical lawotice that this mechanism constitutes indeed the basic dif-
as the previous one: the experimental outcomes in this cagerence from many models of earthquakes, which use blocks
are very complex, apparently nonreproducible, due to the&nd springs to simulate the motion of tectonic plafs-12.
fluctuations in the friction force acting at the incline—sliding A solid body on a perturbed incline is an example of a non-
object interface. Few nonspecialized textbooks have calledquilibrium system receiving an incoming energy flux. If en-
attention to the inherent fluctuating character of frictionergy is continuously injected into nonequilibrium systems, a
forces between solid surfacém exception is Ref2]). Only ~ complex sequential response characterized by time series of
recently friction fluctuations involving solid surfaces have events of all sizes is often observed. Besides sliding blocks
been quantitatively studied in a number of macroscopic situen inclines, other examples of systems and phenomena asso-
ations[3-5|. ciated with a similar type of temporal fluctuating response

In the last few years, it has been shown that intermittenare piles of sand and other granular materfia14; acous-
sliding or stick-slip dynamics of a rough solid nonrotating tic emission from volcanic rocks and microfracturing pro-
cylinder on a rough inclined groove submitted to small con-cesses in generall5,1€]; interface depinning in magnetic
trolled perturbations is a fluctuation phenomenon characteisystemg17]; stick-slip motion in lubricated systenmiS]; and
ized by nontrivial spatiotemporal scaling lay%7] and com-  turbulence{18], among others.
plex critical exponentg8] if the inclination is well below the This work reports on basic geometric aspects of the fluc-
angle of repose. In particular, the time series of intermittentuating behavior observed in experimental time series of slid-
slidings associated with the stick-slip motion of the cylindering events of a rough nonrotating metallic cylinder moving
on the incline were found to present many similarities tointermittently on a rough groove weakly perturbed by exter-
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FIG. 1. Schematic diagram of the experimental apparatus: the % 200 400 600 800 1000
incline A has a lengti.,=1500 mm and is rigidly maintained at an t (perturbations)
inclination #< 6. (=angle of repogewith the horizontal. The cross
section of A is shown in B; C is a cylinder with lengthvarying FIG. 2. Typical nonhomogeneous intermittent time series of

from L=5 to 1000 mm. Sliding events occur after a variable num-sliding events for massive cylinders of aluminum of len¢gh L
ber of impacts of the hammer D. The time series discussed in the 20 mm and(b) L=200 mm, with(6,-6)/ 6;~0.30.
text and illustrated in Fig. 2 are chains of 100 sliding events.

for min the interval studied from 75 to 175 g. The experi-
nal impacts and maintained well below the angle of reposemental apparatus relaxes elastically within the time of 5 s
The Gutenberg and Richter law discussed for this system iBetween two consecutive impacts of the hammer. The system
Ref. [6] is a relation between twaonacroscopicvariables, js mounted on a 200 kg table isolated from mechanical vi-
independent of the sequence of the sliding events; furthemrations. On the chute(with an effective lengthL,
more, the Omori law studied in Rdi8] and the Hurst €Xpo- =1500 mm is placed a metallic cylinder of length
nent analysis presented in R¢T] are defined for anesos-  (5-1000 mn), and the system chute +cylinder operates sig-
cqpip scale associated_ vyith time Windoyvs of many S"pSniﬁcanﬂy below the critical angle of reposé.=tar? u,
within a sequence of sliding events. In this work, we inves-yhere, is the coefficient of static friction of the cylinder on
tigate statistical variables which are strongly related to th@ne chute. The weak impacts of the hammer do not lead to
microscopicdetails of the time series of slidings. The experi-jumps of the cylinder out of contact. In all experiments, the
ments giving origin to these time series are very time-inclination was in the interval 12°—18°, with 1626,< 32°,
consuming but the results are quite robust in the sense thahd the reduced anglé,.— 6)/ 6, was typically in the interval
they are independent of the particular value of several exq 2g_q 35
perimental parameters. In particular, we learn from our ex-  The jnjtial condition in all experiments refers to the cyl-
periment thati) robust and nontrivial temporal scaling laws jnqer at the top of the groove. Afterwards, the number of the
appear in this stick-slip dynamics, afid) the time-support  jmpact of the hammer after which each sliding occurteis;

where dissipation occurs is also statistically robust, definingecorded. as well as the corresponding sliding length In
a set whose dimension lies in the interval 0.61+0.01. Morey; o regime of inclination used in the experiments, the series

over, (iii) the lacunarity functiori19] describing the statisti- ¢ jnquced sliding events are intermittent, i.e., a fluctuating
cal distribution of time domains free of dissipation is shown, ,mper of many controlled perturbations of the hammer
to be related to the corresponding lacunarity of a randomyime ynity is necessary to induce a single sliding event of
version of the classic triadic Cantor set on the line. B&- ¢ cylinder. The total duratiof of each time series corre-

ilean experiments giving rise to the intermittent time seriesspondS to the number of hammer impacts after 100 sliding
studied in this work are described in the next section. In Se€Gayants\ = 0. and varies from 364 to 6.979 time units or

Il our results are presented and discussed. We then justifyo rhation$20]. The number of sliding events was fixed in
the use of mathematical constructions as the Cantor sets Q),ch a manner that in all experiments the time series were
the line to give a statistical description of the intermittént .o cqrded before the cylinder hit the end of the incline. Thus
d|str|bl_1t|on of slidings on the time axis. Conclusions areg,qp sliding sequence refers to a single sweep of the cylinder
made in Sec. IV. along the groove. The total number of perturbations in our
experiments exceeded 56,000, corresponding to 6,000 sliding
events. For illustration, Fig. 2 shows typical intermittent slid-
ing series for two values of the lengthof a massive alumi-
The basic apparatus used to obtain the experimental datiim cylinder of diameter 9.6 mm.
discussed in this work consists of a rigid V-shaped anodized

II. EXPERIMENTAL DETAILS

alumir_lum chute made of a corner plate_of 5 mm thickne_ss Il RESULTS AND DISCUSSION
and with a 90° angular aperture symmetrically disposed with
respect to the vertical plan@=ig. 1). The chute is rigidly The dynamics of translation of a solid body on an inclined

maintained with an inclinatio® with respect to the horizon- groove is dependent on the angle of inclinati@n(i) If ¢
tal, and it is supplied with an articulated hammer of mass > 6., there is a trivial single continuous sliding eventith
which hits the base of the chute with a controlléitked) or without perturbation on the groone(ii) If 6 is slightly
velocity. The results reported here are statistically invariansmaller thané,, the continuous phas@) is replaced by a
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FIG. 3. Cumulative sumih=2_,\(t) of the sliding events as a  gimensjonal boxes of sizenecessary to cover the regions along the
function of time for two different experiments: In the main plot, the time axis where the sliding activity is concentrated. The avetage
corresponding time series was obtained with a cylinder of lengths gyer the entire experimental set of time series of sliding events
L=10 mm, while in the inset the length of the cylinder used in the cjrcles. The asterisks denote the same quantity for an ensemble of
experiment was. =100 mm. The dashed lines in the two plots are gqyg| size of synthetic series: random Cantor sets whose number of
guides to the eye meant to show the linear behaviokof events is equal to the numb@00) of sliding eventgsee text The
%c_ntted line has as slope the golden méas—1)/2=0.618.... The

discrete homogeneous phase with a one-to-one correspo . . . .
9 P P inset showsN(7) for typical experimental time series.

dence between perturbation and sliding respdfeln this

case, there are spatial fluctuations in the magnitude of thevents as a function of time for a cylinder of lengthL
sliding, but no temporal gaps between sliding events. This=10 mm, while in the inset the same quantity is shown for a
phase can be named Euclidean because the support of dissidinder of lengthL=100 mm. As we can see from these
pation has the same dimensibr=1 of the time axis(iii ) If plots, A; increases quite linearly if i.e., the sliding prob-

0 is significantly smaller tham, (as quantified in the previ- ability remains constant in time, and this result is indepen-
ous sectiol there are both spatial fluctuations in the magni-dent of the length of the cylinder. In other words, the energy
tude of the sliding eventand fluctuations in the time be- released by the hammer impact at the bottom of the appara-
tween consecutive sliding events:) For very small angles, tus is transmitted in average homogeneously along the chute.
the resting state of the cylinder is obtained. It is the nonhoFigure 3 has to be distinguished from Figs. 1-4 of Réf,
mogeneous intermittent regim@i) that is studied in the vyhere we _plot th.enumbe.rof sliding events as.afunctlon of.
present work: Fig. 2 shows the nonhomogeneous intermitime, despite their magnitude. On the other side, the beha\_/lor
tence observed in two time series obtained from our experi®f the system may change dramatically depending, for in-

ments. This is interesting and nontrivial because in principljtance' on the values of the inclination of the chute and on

the dissipation could present gaps homogeneously distri he intensity of the hammer impact. Decreasjfigreasing

uted along the time. However, this intermittent he angleé of the incline and/or the intensity of the pertur-

. bations to values far from the ranges mentioned in the last
homogeneous-gap phase was never detected, i.e., natyy

seems to prefer the heterogeneous clustering of slidin Ection would bring the system from the regitiie) defined

. the last paragraph to the regirtie) [to regime(ii) or even
events. Perhaps, this homogeneous gap phase could be 87 However, in this paper, we are just interested in the

tected in experiments using a single crystal placed on anotheggime (i) of nonhomogeneous intermittent motion of the
single crystal. _ o . cylinder on the chute. In the next paragraphs we will quan-
In an experiment like the block-incline studied here, tify this intermittent distribution by calculating the dimen-
where many variables and parameters are involved, it is odjon of the dissipation support and its lacunarity.
crucial relevance to know which elements related to the ap- After assigning “1’[“0” ] to each time position in which
paratus are of importance for the behavior of the system, anghe cylinder slidegis at res}, we define the temporal dissi-
how they could influence any finding. For example, we knowpation suppor®, as the subset of the time axis consisting of
that cylinders of smaller length take more tifraore im-  1's. To quantify the time distribution of the sliding activity,
pacts of the hammer are neegléal slip, and this reflects the we count the numbe(7) of one-dimensional boxes of size
fractal nature of the roughness of the surfaces in relativer necessary to coveX. Here, the variabler is defined as
motion [20]. Furthermore, from a “first sight” into our ex- At/T, whereAt is the corresponding length of the box in
periment, one could be easily led to the conclusion that thé&me units, andT is the total number of perturbations. In the
sliding susceptibility of the blocks should increase in timeinset of Fig. 4, we showN(7) versust for some typical
since they get closer to the impact soufttee hammerafter  series. The circles shown in the main plot represent the com-
each slip(see Fig. 1 However, Fig. 3 shows that this is not plete ensemble averagd(7)), which was obtained by divid-
the case. In the main plot of this figure, we show the cumuing the 7 axes into 15 equal intervals and calculating the
lative sumAt:EiNzl)\(t) of the magnituden of the sliding mean values oN(7).
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For comparison, we show with asterisks in Fig. 4 the cor-
responding functioNyrcs(7)) averaged over an ensemble
of different random Cantor sets defined as follows. First, the
algorithm for the triadic random Cantor set described in Ref.
[21] is implemented for a line with lengthi=3"=2187 (this 10'F 4
value is close to the mean size of the dissipation support of i ]
the series studiedT)=2179: each line segment is divided
into three equal parts and one of them is thereafter randomly
removed. After the 7th iteration, this random construction
contains just 2=128 events. We then take out 28 events
randomly, to get a modified random Cantor @dRCS) with 107
the same numbdr100 of events as in the experimental se- i
ries. (Nyreg(7)) scales agPvres, with Dyres=0.61+0.01, L L
as shown by the dotted line in Fig. 4. The continuous line in 102 10"
the plot has the same slope as the dotted one. As we can see, T
this line gives a good approximation to the corresponding o
slope of the experimental trend line along almost two de- F!G: 5. Log-log plot of the average numbgv(7)) of sliding
cades inr. Although the experimental data clearly do not events within an |nter_val of time. The_ayeragté-) is over the entire
present a perfect scaling—due to the low dimensionality oﬁXpe”memﬁ' set of time series of sliding eve(tcles. The line
the phenomenon and the consequent difficulty to obtain sens sloped=0.65+0.05, which is interpreted here as tfmeass

ries with many events<N(7) indicateswithin the error dimension of the statistic fractal set defined by the dissipation sup-
y T port of the experimental time series. This value is in agreement,

bars that the dissipation suppoepproachesa set with di- within the fluctuation bars, with the dimension found in Fig. 4 cal-

mensionDyrcs=0.61£0.01, which is the fractal dimension ¢yjated with the box counting for the same values of the time in-
of the random Cantor set defined above. It is important tQgpyg| -

notice that the scaling relation shown in Fig. 4 does not mean
that the dissipation suppo a fractal set. Moreover, all the
random Cantor sets studied here atatistical fractal sets
and have in average the same finite SjZ& of the experi-
mental series, as well as the same number of events as in t S i
corresponding sliding sequences. A quite general randor€venth order triadic Cantor S&iCS), whose fractal dimen-
Cantor set construction was introduced by Mauldin and Wil-SIoN iSDrcs=In 2/In 3=0.6309.. (obtained by recursive re-
liams [22]. It consists of the recursive division of the line Moval of the central third of each segm¢@t,23). Let us

segment into three parts of different sizes, which are deteidefine a modified triadic Cantor s@¥iITCS) of seventh order
mined by two random parameters<0,,r,<1, followed by  as a triadic Cantor set after the random removal of 28 events.
the removal of the central segment. The dimension of thét can be easily verified that this operation leads to a set with
random Cantor sets obtained with this algorithm is known aslimension Dyrcs=0.61£0.01. This means that both the
the golden mearDy,y=(1y5-1)/2=0.618... . Mauldin and MRCS and the MTCS simulate, from the point of view of
Williams showed that although the infinite combinations offractal dimension, the dissipation support of the time series
r, andr, lead to completely different geometries, the result-of sliding events. However, it is clear that these two kinds of
ing random Cantor sets appear robust with respect to theiCantor sets are very different in respect to their origin.
dimension. The value oDy, is universal and close to the Clearly, the MRCS is more random than the MTCS. To re-
valueDyrcs=0.61+0.01 obtained from Fig. 4. We speculate move the degeneracy between these two sets due to their
that this general class of random recursive dynamics introcommon value of fractal dimension, we examine another sta-
duced by these authors could be associated with the physicgétical property: the lacunarity function.
phenomenon discussed in the present work. ~ Lacunarity, a concept introduced by Mandelbrot, tries to
An additional method to define a fractal d|menS|on IS quantify the texture of a fractéR3]. Here we use the math-
based on the mass-size relati@8]. In our case this means gmatical algorithm introduced by Allain and Cloitf&9] to
to count the number of sliding eventd(7), within an inter-  .5jate the lacunarity of the dissipation support of the slid-
val of time 7. For.a scaling distribution of intermittent events ing events. A short description of their method can be given
on the time axis we expect that the ensemble averagis follows. First, a time window of sizeis defined, which is

~T - : ig. ) translate 7)=T(1-7)+1 steps(time unitg, from the
<I\[:|(T)>h ' there the n;ashs exponent 1 InIFlg :vir/]e lated byR(1)=T(1-7)+1 ps( 9, f h
show that, in fact{M(7)) behaves as a power law ofwit beginning up to the end of the time series, which has ize
the exponent=0.65+0.05, which is essentially the same aSThe numbern(s,7) is defined as the number of times in

Dures Within the fluctuation bars. Again, this figure has to which the window of sizer containss sliding events during

be distinguished from Fig. 3 in R€f8], where we show the . . .
number of eventbetween two large slipsvhich provides a translatlo_n. Thgs the pr_obab|llt)_/ that the Wln_dow _encounters
S occupied time units during translation ig(s,7)

mesoscopidescription of the time series, as opposed to the :
variable (M(7)), which quantifies themicroscopicdistribu- f‘_”(z’ 7)/R(7). It follows that the lacunarity\(7) can be de-
ined as

tion of sliding events along the dissipation support.

(M(1))

Another way to get randomized Cantor sets in our prob-
would be taking out randomly 28 of the 128 events of a
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L sliding length distribution\(t), albeit a zeroset with larger
‘i (and equally robust, as in the Brownian cademension in
\ the interval 0.61-0.65.
10- D . Finally, we must ask why indeed should this type of ex-
- Vi 1 periment exhibit nonhomogeneous intermittence with a ran-
dom response of sliding events? A possible explanation is
that the number and the individual characteristics of the sev-
eral contacts at the cylinder—chute interface fluctuate con-
tinuously on the time scale associated with the hammer im-
pacts. Eventually, e.g., a single interface contact providing a
force equilibrating a largésmal) fraction of the component

(A(T))

e pe T ~ of the cylinder’s weight along the chutefails and, as a conse-
1010 107 107 100 10 \@
1 L L = 0 quence, a corresponding largemal) resulting force ap-
10 10 ITO 10 10 pears, with the cylinder tending to stop after a Iaisgord

sliding length. The motion of the cylinder is followed by the
FIG. 6. Log-log plot of the lacunarity function\ (7)) for the rest state when the fluctuating interfacial roughness is able to

experimental time serieircles. The dashed line gives the same Provide a pattern of contacts producing the necessary oppos-
function for an ensemble of MTCS of order (2 events, T=3) ing force to equilibrate the weight's component down the
with 28 events randomly eliminatetsee text The inset shows Chute. Evidently, as the angle (or the component of the
A(7) for some typical time serie¢A(7)) decays effectively as the Cylinder’'s weight down the chutedecreases, it becomes on
power law7 03¢ for 3x 1073< r<2x 10! (continuous ling average increasingly difficult to modify the rest state of the
cylinder; i.e., the sliding susceptibility decread@€]. The
. observed intermittence with fluctuating gaps denoting the in-
2;1 s?p(s,7) terval between sliding eventgissipation would be a mani-
= m D) festation _of the.fluqtu_ation in the. {ibi_lity of the cylinder—chute
s1 ' contacts in maintaining the equilibrium of forces for the cyl-
) ] ] . ) ] inder. This situation is reminiscent of the fluctuation-
This function has very interesting properties, being equal tQjissipation theorem: If the contacts and the corresponding
unity when 7=1. The inset of Fig. 6 shows the lacunarity forces at the cylinder—chute interface do not fluctuate, the
A(7) calculated for some time series studied. In the main plotyjinder remains at rest, i.e., there is no dissipation or sliding
we show the experimental ensemble average va\(e)),  event; on the contrary, for increasing fluctuations at the in-
represented by circles, together with the corresponding flucerfacial forces, the dissipation also increases, i.e., a cascade
tuation bars, as a function of. As we can see from this of intermittent sliding events is obtained as the associated
figure, the dashed line follows very closely the trend of theresponse.
curve defined by the circles. This line is no best fit obtained
from the experimental data: it is the lacunarity calculated for
the MTCS of seventh order of the previous paragraph. The IV. CONCLUSION

agreement of the curves is noticeable. It can be seen from \we found robust nontrivial temporal scaling laws related
Fig. 6 that(A(r)) decays effectively as the power 1a#**,  \ith the complex time-distribution of sliding events ob-
along approximately two decades of variability in time, for served in an extensive experimental study of Galilean stick-
3x103<7=2X107", as indicated by the continuous line. sjip dynamics on rough inclined surfaces. It is found that the
The Cantor sets discussed here are mathematical strugme-support where dissipation occurs in these processes ap-
tures with topological dimensiod,=0, fractal dimensiolD  proaches a statistical fractal set characterized by a fixed di-
in the interval(0, 1), and embedding dimensiat¥1[23]. A mensionD=0.61+0.01. The lacunarity function for the time
shown in Fig. 2, intermittence does not distribute homogeseries of events is closely related to the corresponding la-
neously on the time axis, i.e., its temporal support may, ircynarity of a modified random version of the classic triadic
principle, be characterized by a dimensbr<1. Thus Can-  Cantor se{23]. It has to be emphasized that the geometric
tor sets are natural candidates to model nonhomogeneousd statistic properties exhibited by the time series of sliding
intermittence and other fluctuation phenomena defined alongvents are a consequence of the particu|ar nature of the mi-
the one-dimensiondllLD) time axis. Brownian motion is the croscopic friction at the block—incline interface. No spatial
prototype of the fluctuation phenomenon: if we plot the po-and temporal correlations as shown here and as those re-
sition X of a particle executing Brownian motion in 1D as a ported in[6—8,2( are found in these series if the block is
function of the timet, we obtain a fractal recor¥(t) having  moved back to the top of the incline after each sliding event,
dimensionDg=3/2 on theposition-time plane. The zeroset which would mean removing the strong correlation between
for the Brown functionX(t), which is defined as those in- the configuration of the contacts at the interface and the past
stantst for which X(t) cuts the time axis, is also a Cantor set, history of the block on the incline. Due to the very time-
but one with dimensionD=Dg-1=(3/2)-1=0.5 [23]. consuming nature of the experiments described in this paper,
Analogously, the temporal dissipation support studied in thenany aspects remain to be investigated in the future. It is
present work can be seen as a zeroset associated with tmeportant to notice that the results presented in this paper are

A(7)
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restricted to time series obtained from the intermittent stick-have found that triggering events associated with a failure
slip motion of the cylinder, which means the regirtig) define a dissipation support with values of dimension close
defined in Sec. lll, and thus constrains the values of experito the exponents found for our time series of slidings. The
mental parameters as, for instance, the inclinatioof the  application of the analysis reported in the present work to the
chute and the mass of the hammer to the ones mentioned tamporal response of other nonequilibrium systems as those
Sec. I, as said before. However, new experiments exploringnentioned in the end of the second paragraph could clarify
systematically the effect of the intensity of the perturbationimportant aspects of universality in nonequilibrium dissipa-
on the groove, as well as the variation of the materials intive systems.

volved and the effect of the geometry of the sliding objects
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