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We examine the stick-slip fluctuating response of a rough massive nonrotating cylinder moving on a rough
inclined groove which is submitted to weak external perturbations and which is maintained well below the
angle of repose. The experiments presented here, which are reminiscent of Galileo’s works with rolling objects
on inclines, have brought in the last years important insights into the friction between surfaces in relative
motion and are of relevance for earthquakes, differing from classical block-spring models by the mechanism of
energy input in the system. Robust nontrivial temporal scaling laws appearing in the dynamics of this system
are reported, and it is shown that the time-support where dissipation occurs approaches a statistical fractal set
with a fixed value of dimension. The distribution of periods of inactivity in the intermittent motion of the
cylinder is also studied and found to be closely related to the lacunarity of a random version of the classic
triadic Cantor set on the line.
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I. INTRODUCTION

It can be conjectured that the experimental verification of
fluctuations in the dynamic behavior of a block on an incline
was first verified in the beginning of the 17th century. It is
known that as early as 1604 Galileo believed in the now
classical scaling laws, t2 connecting the distances and the
time t for an object falling close to Earth under the action of
gravity f1g. Galileo’s application of this law forrolling ob-
jects on inclined planes was discussed in his last bookThe
Two New Sciences, published in 1638. However, no explicit
or implicit mention of the application of this simple scaling
law for nonrotating objects is made in Galileo’s works. Cer-
tainly Galileo tried to study the pure translational motion of
objects on an incline, but he was possibly unable to encap-
sulate the experimental results in a simple mathematical law
as the previous one: the experimental outcomes in this case
are very complex, apparently nonreproducible, due to the
fluctuations in the friction force acting at the incline–sliding
object interface. Few nonspecialized textbooks have called
attention to the inherent fluctuating character of friction
forces between solid surfacessan exception is Ref.f2gd. Only
recently friction fluctuations involving solid surfaces have
been quantitatively studied in a number of macroscopic situ-
ationsf3–5g.

In the last few years, it has been shown that intermittent
sliding or stick-slip dynamics of a rough solid nonrotating
cylinder on a rough inclined groove submitted to small con-
trolled perturbations is a fluctuation phenomenon character-
ized by nontrivial spatiotemporal scaling lawsf6,7g and com-
plex critical exponentsf8g if the inclination is well below the
angle of repose. In particular, the time series of intermittent
slidings associated with the stick-slip motion of the cylinder
on the incline were found to present many similarities to

time series of earthquakes: The sliding distribution is de-
scribed by the Gutenberg and Richter lawnssd,s−0.5, where
nssd is the number of events of sizes, and the Omori law for
the number of smaller events occurring at a timet after a
large event,nstd, t−p, where the exponentp is an anomalous
one, lying between 0.25 and 0.45, and may be a complex
number. Stick-slip dynamics is a topic of broad interest, and
it traditionally refers to the situation in which a solid on a
horizontal surface is pulled at a constant driving velocityf9g.
In the experiments discussed in this paper, the stick-slip dy-
namics appears as a consequence of a completely different
mechanism: to start the slip we resort to small mechanical
perturbations on an inclined surface, whose angle with the
horizontal is below the angle of repose. It is important to
notice that this mechanism constitutes indeed the basic dif-
ference from many models of earthquakes, which use blocks
and springs to simulate the motion of tectonic platesf10–12g.
A solid body on a perturbed incline is an example of a non-
equilibrium system receiving an incoming energy flux. If en-
ergy is continuously injected into nonequilibrium systems, a
complex sequential response characterized by time series of
events of all sizes is often observed. Besides sliding blocks
on inclines, other examples of systems and phenomena asso-
ciated with a similar type of temporal fluctuating response
are piles of sand and other granular materialsf13,14g; acous-
tic emission from volcanic rocks and microfracturing pro-
cesses in generalf15,16g; interface depinning in magnetic
systemsf17g; stick-slip motion in lubricated systemsf5g; and
turbulencef18g, among others.

This work reports on basic geometric aspects of the fluc-
tuating behavior observed in experimental time series of slid-
ing events of a rough nonrotating metallic cylinder moving
intermittently on a rough groove weakly perturbed by exter-
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nal impacts and maintained well below the angle of repose.
The Gutenberg and Richter law discussed for this system in
Ref. f6g is a relation between twomacroscopicvariables,
independent of the sequence of the sliding events; further-
more, the Omori law studied in Ref.f8g and the Hurst expo-
nent analysis presented in Ref.f7g are defined for amesos-
copic scale associated with time windows of many slips
within a sequence of sliding events. In this work, we inves-
tigate statistical variables which are strongly related to the
microscopicdetails of the time series of slidings. The experi-
ments giving origin to these time series are very time-
consuming but the results are quite robust in the sense that
they are independent of the particular value of several ex-
perimental parameters. In particular, we learn from our ex-
periment thatsid robust and nontrivial temporal scaling laws
appear in this stick-slip dynamics, andsii d the time-support
where dissipation occurs is also statistically robust, defining
a set whose dimension lies in the interval 0.61±0.01. More-
over, siii d the lacunarity functionf19g describing the statisti-
cal distribution of time domains free of dissipation is shown
to be related to the corresponding lacunarity of a random
version of the classic triadic Cantor set on the line. TheGal-
ilean experiments giving rise to the intermittent time series
studied in this work are described in the next section. In Sec.
III our results are presented and discussed. We then justify
the use of mathematical constructions as the Cantor sets on
the line to give a statistical description of the intermittent
distribution of slidings on the time axis. Conclusions are
made in Sec. IV.

II. EXPERIMENTAL DETAILS

The basic apparatus used to obtain the experimental data
discussed in this work consists of a rigid V-shaped anodized
aluminum chute made of a corner plate of 5 mm thickness
and with a 90° angular aperture symmetrically disposed with
respect to the vertical planesFig. 1d. The chute is rigidly
maintained with an inclinationu with respect to the horizon-
tal, and it is supplied with an articulated hammer of massm
which hits the base of the chute with a controlledsfixedd
velocity. The results reported here are statistically invariant

for m in the interval studied from 75 to 175 g. The experi-
mental apparatus relaxes elastically within the time of 5 s
between two consecutive impacts of the hammer. The system
is mounted on a 200 kg table isolated from mechanical vi-
brations. On the chuteswith an effective length L0
=1500 mmd is placed a metallic cylinder of lengthL
s5–1000 mmd, and the system chute+cylinder operates sig-
nificantly below the critical angle of reposeuc=tan−1 ms,
wherems is the coefficient of static friction of the cylinder on
the chute. The weak impacts of the hammer do not lead to
jumps of the cylinder out of contact. In all experiments, the
inclination was in the interval 12°–18°, with 16°,uc,32°,
and the reduced anglesuc−ud /uc was typically in the interval
0.28–0.35.

The initial condition in all experiments refers to the cyl-
inder at the top of the groove. Afterwards, the number of the
impact of the hammer after which each sliding occurred,t, is
recorded, as well as the corresponding sliding lengthlstd. In
the regime of inclination used in the experiments, the series
of induced sliding events are intermittent, i.e., a fluctuating
number of many controlled perturbations of the hammer
stime unitsd is necessary to induce a single sliding event of
the cylinder. The total durationT of each time series corre-
sponds to the number of hammer impacts after 100 sliding
eventslÞ0, and varies from 364 to 6,979 time units or
perturbationsf20g. The number of sliding events was fixed in
such a manner that in all experiments the time series were
recorded before the cylinder hit the end of the incline. Thus
each sliding sequence refers to a single sweep of the cylinder
along the groove. The total number of perturbations in our
experiments exceeded 56,000, corresponding to 6,000 sliding
events. For illustration, Fig. 2 shows typical intermittent slid-
ing series for two values of the lengthL of a massive alumi-
num cylinder of diameter 9.6 mm.

III. RESULTS AND DISCUSSION

The dynamics of translation of a solid body on an inclined
groove is dependent on the angle of inclinationu: sid If u
.uc, there is a trivial single continuous sliding eventswith
or without perturbation on the grooved. sii d If u is slightly
smaller thanuc, the continuous phasesid is replaced by a

FIG. 1. Schematic diagram of the experimental apparatus: the
incline A has a lengthL0=1500 mm and is rigidly maintained at an
inclination u,uc s=angle of reposed with the horizontal. The cross
section of A is shown in B; C is a cylinder with lengthL varying
from L=5 to 1000 mm. Sliding events occur after a variable num-
ber of impacts of the hammer D. The time series discussed in the
text and illustrated in Fig. 2 are chains of 100 sliding events.

FIG. 2. Typical nonhomogeneous intermittent time series of
sliding events for massive cylinders of aluminum of lengthsad L
=20 mm andsbd L=200 mm, withsuc−ud /uc<0.30.
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discrete homogeneous phase with a one-to-one correspon-
dence between perturbation and sliding responsef6g. In this
case, there are spatial fluctuations in the magnitude of the
sliding, but no temporal gaps between sliding events. This
phase can be named Euclidean because the support of dissi-
pation has the same dimensionD=1 of the time axis.siii d If
u is significantly smaller thanuc sas quantified in the previ-
ous sectiond, there are both spatial fluctuations in the magni-
tude of the sliding eventsand fluctuations in the time be-
tween consecutive sliding events.sivd For very small angles,
the resting state of the cylinder is obtained. It is the nonho-
mogeneous intermittent regimesiii d that is studied in the
present work: Fig. 2 shows the nonhomogeneous intermit-
tence observed in two time series obtained from our experi-
ments. This is interesting and nontrivial because in principle
the dissipation could present gaps homogeneously distrib-
uted along the time. However, this intermittent
homogeneous-gap phase was never detected, i.e., nature
seems to prefer the heterogeneous clustering of sliding
events. Perhaps, this homogeneous gap phase could be de-
tected in experiments using a single crystal placed on another
single crystal.

In an experiment like the block-incline studied here,
where many variables and parameters are involved, it is of
crucial relevance to know which elements related to the ap-
paratus are of importance for the behavior of the system, and
how they could influence any finding. For example, we know
that cylinders of smaller length take more timesmore im-
pacts of the hammer are neededd to slip, and this reflects the
fractal nature of the roughness of the surfaces in relative
motion f20g. Furthermore, from a “first sight” into our ex-
periment, one could be easily led to the conclusion that the
sliding susceptibility of the blocks should increase in time
since they get closer to the impact sourcesthe hammerd after
each slipssee Fig. 1d. However, Fig. 3 shows that this is not
the case. In the main plot of this figure, we show the cumu-
lative sumAt=oi=1

N lstd of the magnitudel of the sliding

events as a function of timet for a cylinder of lengthL
=10 mm, while in the inset the same quantity is shown for a
cylinder of lengthL=100 mm. As we can see from these
plots, At increases quite linearly int, i.e., the sliding prob-
ability remains constant in time, and this result is indepen-
dent of the length of the cylinder. In other words, the energy
released by the hammer impact at the bottom of the appara-
tus is transmitted in average homogeneously along the chute.
Figure 3 has to be distinguished from Figs. 1–4 of Ref.f8g,
where we plot thenumberof sliding events as a function of
time, despite their magnitude. On the other side, the behavior
of the system may change dramatically depending, for in-
stance, on the values of the inclination of the chute and on
the intensity of the hammer impact. Decreasingfincreasingg
the angleu of the incline and/or the intensity of the pertur-
bations to values far from the ranges mentioned in the last
section would bring the system from the regimesiii d defined
in the last paragraph to the regimesivd fto regimesii d or even
sidg. However, in this paper, we are just interested in the
regime siii d of nonhomogeneous intermittent motion of the
cylinder on the chute. In the next paragraphs we will quan-
tify this intermittent distribution by calculating the dimen-
sion of the dissipation support and its lacunarity.

After assigning “1”f“0” g to each time position in which
the cylinder slidesfis at restg, we define the temporal dissi-
pation supportS as the subset of the time axis consisting of
1’s. To quantify the time distribution of the sliding activity,
we count the numberNstd of one-dimensional boxes of size
t necessary to coverS. Here, the variablet is defined as
Dt /T, where Dt is the corresponding length of the box in
time units, andT is the total number of perturbations. In the
inset of Fig. 4, we showNstd versust for some typical
series. The circles shown in the main plot represent the com-
plete ensemble averagekNstdl, which was obtained by divid-
ing the t axes into 15 equal intervals and calculating the
mean values ofNstd.

FIG. 3. Cumulative sumAt=oi=1
N lstd of the sliding events as a

function of time for two different experiments: In the main plot, the
corresponding time series was obtained with a cylinder of length
L=10 mm, while in the inset the length of the cylinder used in the
experiment wasL=100 mm. The dashed lines in the two plots are
guides to the eye meant to show the linear behavior ofAt.

FIG. 4. Log-log plot of the average numberkNstdl of one-
dimensional boxes of sizet necessary to cover the regions along the
time axis where the sliding activity is concentrated. The averagek·l
is over the entire experimental set of time series of sliding events
scirclesd. The asterisks denote the same quantity for an ensemble of
equal size of synthetic series: random Cantor sets whose number of
events is equal to the numbers100d of sliding eventsssee textd. The
dotted line has as slope the golden meansÎ5−1d /2.0.618. . .. The
inset showsNstd for typical experimental time series.
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For comparison, we show with asterisks in Fig. 4 the cor-
responding functionkNMRCSstdl averaged over an ensemble
of different random Cantor sets defined as follows. First, the
algorithm for the triadic random Cantor set described in Ref.
f21g is implemented for a line with lengthT=37=2187sthis
value is close to the mean size of the dissipation support of
the series studied,kTl>2175d: each line segment is divided
into three equal parts and one of them is thereafter randomly
removed. After the 7th iteration, this random construction
contains just 27=128 events. We then take out 28 events
randomly, to get a modified random Cantor setsMRCSd with
the same numbers100d of events as in the experimental se-
ries. kNMRCSstdl scales ast−DMRCS, with DMRCS=0.61±0.01,
as shown by the dotted line in Fig. 4. The continuous line in
the plot has the same slope as the dotted one. As we can see,
this line gives a good approximation to the corresponding
slope of the experimental trend line along almost two de-
cades int. Although the experimental data clearly do not
present a perfect scaling—due to the low dimensionality of
the phenomenon and the consequent difficulty to obtain se-
ries with many events—kNstdl indicateswithin the error
bars that the dissipation supportapproachesa set with di-
mensionDMRCS=0.61±0.01, which is the fractal dimension
of the random Cantor set defined above. It is important to
notice that the scaling relation shown in Fig. 4 does not mean
that the dissipation supportis a fractal set. Moreover, all the
random Cantor sets studied here arestatistical fractal sets
and have in average the same finite sizekTl of the experi-
mental series, as well as the same number of events as in the
corresponding sliding sequences. A quite general random
Cantor set construction was introduced by Mauldin and Wil-
liams f22g. It consists of the recursive division of the line
segment into three parts of different sizes, which are deter-
mined by two random parameters 0, r1,r2,1, followed by
the removal of the central segment. The dimension of the
random Cantor sets obtained with this algorithm is known as
the golden mean,DMW ;sÎ5−1d /2=0.618. . . . Mauldin and
Williams showed that although the infinite combinations of
r1 andr2 lead to completely different geometries, the result-
ing random Cantor sets appear robust with respect to their
dimension. The value ofDMW is universal and close to the
valueDMRCS=0.61±0.01 obtained from Fig. 4. We speculate
that this general class of random recursive dynamics intro-
duced by these authors could be associated with the physical
phenomenon discussed in the present work.

An additional method to define a fractal dimension is
based on the mass-size relationf23g. In our case this means
to count the number of sliding events,Mstd, within an inter-
val of timet. For a scaling distribution of intermittent events
on the time axis we expect that the ensemble average
kMstdl,td, where the mass-exponentd,1. In Fig. 5 we
show that, in fact,kMstdl behaves as a power law oft with
the exponentd=0.65±0.05, which is essentially the same as
DMRCS within the fluctuation bars. Again, this figure has to
be distinguished from Fig. 3 in Ref.f8g, where we show the
number of eventsbetween two large slips, which provides a
mesoscopicdescription of the time series, as opposed to the
variable kMstdl, which quantifies themicroscopicdistribu-
tion of sliding events along the dissipation support.

Another way to get randomized Cantor sets in our prob-
lem would be taking out randomly 28 of the 128 events of a
seventh order triadic Cantor setsTCSd, whose fractal dimen-
sion isDTCS=ln 2/ ln 3=0.6309. . .sobtained by recursive re-
moval of the central third of each segmentf21,23gd. Let us
define a modified triadic Cantor setsMTCSd of seventh order
as a triadic Cantor set after the random removal of 28 events.
It can be easily verified that this operation leads to a set with
dimension DMTCS=0.61±0.01. This means that both the
MRCS and the MTCS simulate, from the point of view of
fractal dimension, the dissipation support of the time series
of sliding events. However, it is clear that these two kinds of
Cantor sets are very different in respect to their origin.
Clearly, the MRCS is more random than the MTCS. To re-
move the degeneracy between these two sets due to their
common value of fractal dimension, we examine another sta-
tistical property: the lacunarity function.

Lacunarity, a concept introduced by Mandelbrot, tries to
quantify the texture of a fractalf23g. Here we use the math-
ematical algorithm introduced by Allain and Cloitref19g to
calculate the lacunarity of the dissipation support of the slid-
ing events. A short description of their method can be given
as follows. First, a time window of sizet is defined, which is
translated byRstd=Ts1−td+1 stepsstime unitsd, from the
beginning up to the end of the time series, which has sizeT.
The numbernss,td is defined as the number of times in
which the window of sizet containss sliding events during
translation. Thus the probability that the window encounters
s occupied time units during translation ispss,td
=nss,td /Rstd. It follows that the lacunarityLstd can be de-
fined as

FIG. 5. Log-log plot of the average numberkMstdl of sliding
events within an interval of timet. The averagek·l is over the entire
experimental set of time series of sliding eventsscirclesd. The line
has sloped=0.65±0.05, which is interpreted here as thesmassd
dimension of the statistic fractal set defined by the dissipation sup-
port of the experimental time series. This value is in agreement,
within the fluctuation bars, with the dimension found in Fig. 4 cal-
culated with the box counting for the same values of the time in-
terval t.
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Lstd =
os=1

t
s2pss,td

fos=1

t
spss,tdg2

. s1d

This function has very interesting properties, being equal to
unity when t=1. The inset of Fig. 6 shows the lacunarity
Lstd calculated for some time series studied. In the main plot
we show the experimental ensemble average valuekLstdl,
represented by circles, together with the corresponding fluc-
tuation bars, as a function oft. As we can see from this
figure, the dashed line follows very closely the trend of the
curve defined by the circles. This line is no best fit obtained
from the experimental data: it is the lacunarity calculated for
the MTCS of seventh order of the previous paragraph. The
agreement of the curves is noticeable. It can be seen from
Fig. 6 thatkLstdl decays effectively as the power lawt−0.36,
along approximately two decades of variability in time, for
3310−3øtø2310−1, as indicated by the continuous line.

The Cantor sets discussed here are mathematical struc-
tures with topological dimensiondt=0, fractal dimensionD
in the intervals0, 1d, and embedding dimensiond=1 f23g. As
shown in Fig. 2, intermittence does not distribute homoge-
neously on the time axis, i.e., its temporal support may, in
principle, be characterized by a dimensionD,1. Thus Can-
tor sets are natural candidates to model nonhomogeneous
intermittence and other fluctuation phenomena defined along
the one-dimensionals1Dd time axis. Brownian motion is the
prototype of the fluctuation phenomenon: if we plot the po-
sition X of a particle executing Brownian motion in 1D as a
function of the timet, we obtain a fractal recordXstd having
dimensionDB=3/2 on theposition-time plane. The zeroset
for the Brown functionXstd, which is defined as those in-
stantst for which Xstd cuts the time axis, is also a Cantor set,
but one with dimensionD=DB−1=s3/2d−1=0.5 f23g.
Analogously, the temporal dissipation support studied in the
present work can be seen as a zeroset associated with the

sliding length distributionlstd, albeit a zeroset with larger
sand equally robust, as in the Brownian cased dimension in
the interval 0.61–0.65.

Finally, we must ask why indeed should this type of ex-
periment exhibit nonhomogeneous intermittence with a ran-
dom response of sliding events? A possible explanation is
that the number and the individual characteristics of the sev-
eral contacts at the cylinder–chute interface fluctuate con-
tinuously on the time scale associated with the hammer im-
pacts. Eventually, e.g., a single interface contact providing a
force equilibrating a largessmalld fraction of the component
of the cylinder’s weight along the chutefails and, as a conse-
quence, a corresponding largessmalld resulting force ap-
pears, with the cylinder tending to stop after a longsshortd
sliding length. The motion of the cylinder is followed by the
rest state when the fluctuating interfacial roughness is able to
provide a pattern of contacts producing the necessary oppos-
ing force to equilibrate the weight’s component down the
chute. Evidently, as the angleu sor the component of the
cylinder’s weight down the chuted decreases, it becomes on
average increasingly difficult to modify the rest state of the
cylinder; i.e., the sliding susceptibility decreasesf20g. The
observed intermittence with fluctuating gaps denoting the in-
terval between sliding eventssdissipationd would be a mani-
festation of the fluctuation in the ability of the cylinder–chute
contacts in maintaining the equilibrium of forces for the cyl-
inder. This situation is reminiscent of the fluctuation-
dissipation theorem: If the contacts and the corresponding
forces at the cylinder–chute interface do not fluctuate, the
cylinder remains at rest, i.e., there is no dissipation or sliding
event; on the contrary, for increasing fluctuations at the in-
terfacial forces, the dissipation also increases, i.e., a cascade
of intermittent sliding events is obtained as the associated
response.

IV. CONCLUSION

We found robust nontrivial temporal scaling laws related
with the complex time-distribution of sliding events ob-
served in an extensive experimental study of Galilean stick-
slip dynamics on rough inclined surfaces. It is found that the
time-support where dissipation occurs in these processes ap-
proaches a statistical fractal set characterized by a fixed di-
mension,D=0.61±0.01. The lacunarity function for the time
series of events is closely related to the corresponding la-
cunarity of a modified random version of the classic triadic
Cantor setf23g. It has to be emphasized that the geometric
and statistic properties exhibited by the time series of sliding
events are a consequence of the particular nature of the mi-
croscopic friction at the block–incline interface. No spatial
and temporal correlations as shown here and as those re-
ported in f6–8,20g are found in these series if the block is
moved back to the top of the incline after each sliding event,
which would mean removing the strong correlation between
the configuration of the contacts at the interface and the past
history of the block on the incline. Due to the very time-
consuming nature of the experiments described in this paper,
many aspects remain to be investigated in the future. It is
important to notice that the results presented in this paper are

FIG. 6. Log-log plot of the lacunarity functionkLstdl for the
experimental time seriesscirclesd. The dashed line gives the same
function for an ensemble of MTCS of order 7s27 events,T=37d
with 28 events randomly eliminatedssee textd. The inset shows
Lstd for some typical time series.kLstdl decays effectively as the
power lawt−0.36 for 3310−3øtø2310−1 scontinuous lined.
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restricted to time series obtained from the intermittent stick-
slip motion of the cylinder, which means the regimesiii d
defined in Sec. III, and thus constrains the values of experi-
mental parameters as, for instance, the inclinationu of the
chute and the mass of the hammer to the ones mentioned in
Sec. II, as said before. However, new experiments exploring
systematically the effect of the intensity of the perturbation
on the groove, as well as the variation of the materials in-
volved and the effect of the geometry of the sliding objects
are necessary for a better understanding of this fluctuation
phenomenon. Furthermore, another important aspect to be
considered is the possibility of a universal valueD
=0.61±0.01 for the dimension of the dissipation support in
any experiment involving sliding of rough solids of the type
discussed in this paper. In a recent paperf24g, Feng and Seto
have analyzed several time series of acoustic emissions ob-
tained from microfracturing in rocks, which is a process in-
timately connected with the dynamics of earthquakes, and

have found that triggering events associated with a failure
define a dissipation support with values of dimension close
to the exponents found for our time series of slidings. The
application of the analysis reported in the present work to the
temporal response of other nonequilibrium systems as those
mentioned in the end of the second paragraph could clarify
important aspects of universality in nonequilibrium dissipa-
tive systems.
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